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OPTINLG TRANXFEFiS BETWEEN ELLIPTIC COPLANAR ORBITS (TIME OPEN) 

SUMMARY 

From the viewpoint of character is t ic  speed, the optimal t ransfers  between 
e l l i p t i c  coplanar orb i t s  a re  of 4 types: by one, two, or three f i n i t e  impulses, or 
e lse  "through inf in i ty"  ( theoret ical ly  u t i l i z ing  intermediate orb i t s  which are  par- 
abolic, or pract ical ly ,  very elongated e l l i p ses ) ,  
a rb i t r a r i l y  subdivided since the t ransfer  time i s  not limited. Thus, a rocket i n -  
capable of furnishing the impulses,can nevertheless approach as near as one wishes 
t o  the optimum ( i n  a suf f ic ien t ly  long time). The t ransfers  by one or three i m -  
pulses are very ra re .  The la t ter  only appear f o r  large eccentr ic i t ies :  it i s  
necessary f o r  the sum of the eccent r ic i t ies  of the i n i t i a l  and f i n a l  orb i t s  t o  
exceed 1.712. 
the optimal impulses (and therefore fo r  the one or two intermediate e l l i p ses )  i s  
generally very d i f f i c u l t .  It i s  only easy i n  the following cases (only the f i r s t  
case i s  shown here): 
side); inverted coaxial o rb i t s  (perigees on opposite sides); equal orbits;  quasi- 
circular,  neighboring orbits; quasi-circular, not neighboring orbits;  o rb i t s  of 
which one has an eccentr ic i ty  near one. 

Of course, each impulse can be 

When the optimal t ransfer  i s  not "through inf in i ty ,"  the search for 

t ransfers  between: coaxial o rb i t s  (perigees on the same 

The th i rd  par t  gives the method of determining the optimal number of impulses 
(by one, two, or three impulses or e l se  "through infinity") i n  the majority of 
cases. 

INTRODUCDON 

The problem of o rb i t a l  t ransfer  and tha t  of spa t ia l  rendezvous ( t o  rejoin--in 
posit ion and speed--a r e a l  or f i c t i t i o u s  moving point circulating i n  space) are  
obviously problems essent ia l  t o  space exploration. 

One of the severe constraints i n  these problems i s  the l imited performance 
of space propulsion systems. 
most economical way t o  e f fec t  a t ransfer  or rendezvous. 

It is  therefore very interest ing t o  search fo r  the 
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The problem thus posed i s  very complex, even i n  the case of Keplerian orb i t s  
removed from every perturbing influence, i.e., a Newtonian f i e l d  of a t t rac t ion  where 
there i s  only one center of mass and it is  fixed i n  posit ion and t i m e ;  one i s  
scarcely able t o  resolve the following cases: 

ture when time i s  limited and fixed; 
1. 

2 .  

t ransfer  or  rendezvous on an o rb i t  i n f in i t e ly  near t o  the orb i t  of depar- 

transfer or  rendezvous on any orb i t  without l imitat ion of duration. 

It i s  the  lat ter case which i s  studied here (also being res t r ic ted  t o  the study 
of coplanar orb i t s ) .  The economy of propellant mass always corresponds t o  the  econ- 
omy of character is t ic  speed, whether speed of ejection i s  modulated o r  not (the op- 
timization always leads t o  the use of the m a x i m a l  speed of e ject ion) .  Therefore the 
problem i s  always t o  f ind the t ransfer  of minimal character is t ic  speed i n  each case. 

It happens often tha t  one obtains (some) t ransfers  of prohibitive time, and 
even of i n f in i t e  duration. 
t i on  which one would be able to approach i n  a suff ic ient ly  long time. 

The study will give then a lower bound for  fue l  consump- 

Some similar problems have already been dea l t  with (see references), most often 
with r e s t r i c t ive  hypotheses (limited number of impulses, e tc . .  . . ) , 
numerous numerical studies. 

There axe a l so  

1. FIRST PART 

1.1 Definition of the Optimal Character of the  Transfer 

There i s  onlyncenter of a t t rac t ion  of a given mass. 
o n e  

A t  the time t ,  = 0 a moving point i s  on a given e l l i p t i c  or  parabolic Keplerian 
orb i t .  
orbi t ,  that the minimum character is t ic  speed be expended i n  the t ransfer  (and there- 
fore the  m i n i m  f'uel consurrrption) . 

One wishes tha t  a t  the t i m e  t, = +a it would be on another prespecified 

The problem of the rendezvous: t o  re jo in  a re& or f i c t iona l  moving point c i r -  
culating on the  f inal  orb i t .  
than the simple transfer because one can always, i n  order to achieve the  transfer,  
w a i t  f o r  "the good moment" on an o rb i t  neighboring the f i n a l  o rb i t  and of a s l igh t ly  
different  period. 

With t i m e  open, this maneuver i s  no more expensive 

Therefore we have only problems of simple transfers.  

1.2 Notations 

The direction of the perigee of the  f irst  orbi t  i s  taken for  the direction of 
reference, with posit ive rotat ion i n  the direction of motion. 
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The f i r s t  orb i t  i s  en t i re ly  defined by aI --its semimajor axis and e, --its 
eccentricity, t he  second i s  given by a2, e, and  longitude of the perigee), 

We w i l l  use the regular notations and reserve the  non-subscripted l e t t e r s  fo r  
the "actua3'' or  "osculatory" orb i t .  

-c 
y = acceleration due t o  the action of the propellants. 

Vc= lltl d t  
t 

0 
= character is t ic  speed. 

o = semimajor axis.  

e = eccentricity.  

b = a,/- = semiminor axis.  

p = a ( I  - e21 = semi l a t u s  rectum. 

e = ae = focal  distance. 

i3 = longitude of the perigee. 

v = true anomaly. 

E = eccentric anomaly. 

n = mean motion. 

p = n 2 0 3  = gravi ta t iord-  constant. 

-9 r = radius vector. 

-e 

V = speed vector. 

-9 - -  
H = r x V = angular momentum vector. 

H = 121 = nab = length of the angular momentum vector. 

p = a(I  - e )  = distance t o  the perigee. 0 S P I p I b 

A = a ( l + e )  = distance t o  the apogee. b I  o I A 
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Fig. 1. Orbit. OA = OP = FB = a 
OB = b 
OF = c 
FP = P 
FA = A 

r = = a(1 - e cos E )  
1 + e cos v 

1 . 3  Action of the Engine Thrust 

An acceleration p caused by propulsive act ion w i l l  be decomposed into: 

Cp i s  oriented 
i n  an opposite 
sense from v 
and B. 

S = y s i n  (p = r ad ia l  acceleration 

T = y cos (p = horizontal acceleration 
(posit ive i n  the upward direction) 

(posi t ive i n  the forward direction) 

One obtains the c lass ica l  formulas: 

da 2a 
d t  nb 
de b 
d t  na2 
dij b a - - - - [ -S cos v + T(sin v + ; s i n  E)]  
d t  nac 

- _ -  - [ S  e s i n  v + ~ ( 1  + e cos v)] 

- - - -[s s i n v +   cos v +- cos E)] 

One can deduce from this: 

- dH = rT; 2 L -  2b r T  (H2 = p p )  
d t  d t  na2 
dc = [ S  e s i n v  + ~ ( 1  + e cos v)] 
d t  H 
- d b = &  [ T [ 2  + e(cos v - cos E)] + S e s i n  v 
d t  n 1 

Fig. 2. Thrust. 
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Remark: The t ransfer  between one parabola and another demands a negligible charac- 
t e r i s t i c  speed: an i n f i n i t e l y  small impulse a t  i n f i n i t e  distance i s  suff ic ient  f o r  
passing t o  a circular  orbi t ,  and another one for passing t o  the second parabola. 
Therefore, the  optimal t ransfer  between two e l l i p t i c  orb i t s  never u t i l i z e s  greater 
than parabolic speeds. 

2. SECOND PART 

2.1 The Domain of Maneuverability 

It i s  easy enough t o  demonstrate tha t  the  optimal t ransfer  between two coplanar 
e l l ipses  i s  always en t i re ly  i n  the plane of the two ell ipses;  we will assume t h i s  
point. 

As1 orbi t  i s  defined by a, e, and G. The state of a rocket can now be defined 
t 

by a, e, W and V, (= y d t )  or by b, e, 3, V c ,  
0 

One can change independent variables and thereby eliminate time, the maneuver- 
a b i l i t y  being canonical and a function only of the parameters b, e, W, and V,; one 
obtains then i n  order t o  study the actions of an in f in i t e ly  s m a l l  t h r u s t y =  dV,: 

db = 1 [cos 4[2 + e(cos v - cos E)] + e s i n  v s i n  CP 
dVc n 
- - -  de - [cos(, - 4) + cos+eos E 
dV, na2 

- dz = b [ s i n  ( v  - 4) + 
dV nac 1 - a s i n  E cos Q, 

The control parameters are v (attached t o  E)  and 4. One can i n  effect  always 
choose Cp, direction of the thrust,and v, point of the orb i t  where thrust  i s  applied. 
It i s  always possible t o  w a i t  fo r  the best  posit ion along the  orbi t  ( this i s  per- 
missible when time i s  open). 

- z  ncdG ndb na2 de x, - - -Y, - -  
dVC dVC 

Let us suppose, i n  order t o  simplify: - - = 
b dV, 

The domain of maneuverability i s  described by: 

na2 d e  X = COS(V - Q,) + C O S + C O S  E = - - 
b dVc 

b ncdG Y = - sin(v - 4)  + s i n  E cos+  = - 
dVC a 

db Z = 2 cos++ e cos (v - Cp) - e cos E c o s +  = n - 
dVC 



b Hence it depends only upon e because = ./= 
The changing of + i n to  + + 7r changes X i n t o  -X, Y i n to  -Y, Z i n t o  -Z; the  

point 0 (X = 0; Y = 0; Z = 0) i s  therefore the  center of symmetry of the domain. 

Likewlse the  plane OXZ and the axis OY (v i n t o  -v and 9 i n t o - + )  a re  elements 
of symmetry of t he  domain. 

Fig. 3. Domain of maneuverability f o r  e = 0. 

Y * 

1x1 and lZl  m a x i m  are  worth t-2 and are obtained for 9 = 0 or TT, and v = E = 0 
or r. 
Oxz . The domain of maneuverability then comprises the  square +2, -2 i n  the plane 

It i s  easy t o  ver i fy  tha t  42X2+ Y2L Z2; the  domain i s  therefore always a t  the 
i n t e r i o r  of the cylinder defined by X2+ Y2 54, lZl I 2 .  

x = 2 cos +cos v + s i n + s i n  v b 
x2.t y2= Consider e = 0 ( = 1; v = E )  

3 1 1 + K Z 2  

-_ 
Y = 2 s i n v  cos 9 - s i n + c o s  v 
z = 2 cos+ 

The domain of maneuverability fo r  e = 0 is  formed of a hyperboloid of one sheet 
(Fig. 3) of axis OZ limited Campleting the domain by the smallest con- 
vex volume which contains it, one obtains fo r  the t o t a l  domain, the cylinder defined 
above (X2+ Y2 5 4; I Z l  12); the only useful points of the domain a re  those s i tuated 
on the surface of t h i s  cylinder--that is, those forwhichZ = 52, with e i ther  = 0 
or re 

t o  Z = t 2. 

Any other value f o r  4 i s  not optimal. 

The domain of t o t a l  maneuverability has a s l i gh t ly  different  aspect as repre- 
sented i n  Fig. 4. 

It contains the  square ABCD (+2; -2) i n  the plane OXZ, and comprises 2 convex 
zones (shaded) corresponding t o  the useful values of +(which are  about from 

e s i n  v e s i n  v e s i n  v e s i n  v 
t o  TT + ). These zones a re  pinched 3 to 2 3 2 

and from TT + 
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a t  A, B, C and D. The domain comprises, i n  addition, three developable surfaces: 
one lateral. with such generatrices as LM ( -  //OZ), the two others above and below 
with such generatrices JK ( N //OX). The generatrices correspond t o  some poss ib i l i -  
t ies of commutation (switching), t ha t  i s ,  t o  discontinuities i n  the posit ion of the 
thrust application point. 

Fig. 4. Domain of maneuverability f o r  e -0 .  

I z  

A 

X- 

0 

Study fo r  e -1 - - - - - - - -  
t an  = ,/E l + e  tan 5 E ; then two cases: 

v a rb i t ra ry  x = cos cp + cos (v - 9 )  
Y = O  
z = x  J E - 0  

E a rb i t ra ry  

X = COS 4 (COS E - 1) 
Y = coscpsin E 
z = -x 

One eas i ly  deduces from t h i s  the domain of t o t a l  maneuverability (Fig. 5) .  

The total. domain always contains the square ABCD. It i s  l imited by 4 t r iangles  
such as AEF, and 4 cones with ver t ices  A and C being supported on the ell ipse:  

X = -Z = cos E - 1; Y = s i n  E 

and i t s  counterpart which i s  symmetric with respect t o  0. 

F( -1, +1, +1) corresponds t o  E = 7~/2 and+ = 0. 

&The useful points of the  domain a re  those which a re  on the surface, tha t  is: 
1. A and C f o r  which v = 0 and = 0 or  x; 
2.  half of t he  points of the 2 el l ipses ,  f o r  which cos E I O  and C#J = 0 or T. 
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One sees then that f o r  0 < IEI< 7r/2 there e x i s t  2 purely ballistic arcs without 
any usefd direction. 

The generatrices like AJ or AL represent possibilities of commutation. 
triangles like AEF are possibilities of double commutation, that is to say, of 
infinitesimal optiw transfers by 3 impulses. 

!The 

Fig. 5. Domain of maneuverability for e - 1. 
t' 

X +- 

If one studies the same domain with more precision one obtains a slighhly 
different image presented in projection on the plane OXZ in Fig. 6. 

There are 4 convex zones (shaded) corresponding to usef'ul values of (p. These 
are pinched respectively at A, B, C and D. 
developable surfaces of which JK, LM, PN are generatrices. 
to possibilities of commutation. ) 

There are 4 triangles like RFG, and 6 
(These always correspond 

Fig. 6. Domain of maneuverability for e - 1. 
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General Case - - - - - -  
The dwain of maneuverability always has the symmetries (0 ,  OY, O X Z ) .  

l i e s  within the  cylinder Xz+ Y2 5 4, lZ l  5 2, of which it contains the square ABCD i n  
the  plane 0%. 
there i s  a l imiting value, eo, close t o  0.95, f o r  which appear t r iangles  which 
characterize the domain fo r  e - 1. 

It always 

It changes form i n  a continuous manner from e = 0 u n t i l  e = 1 and 

e S e,: there a re  two opposed angles by the vertex of useful 4 values ( tha t  
is, which can be optimal f o r  a w e l l  chosen t ransfer )  f o r  each value of v. 

e > e,: cer ta in  positions of orb i t  ( i n  the  lower ha l f )  have no useful angle. 
They correspond t o  necessarily b a l l i s t i c  arcs.  For these eccentr ic i t ies  there ex is t  
inf ini tes imal  optimal t ransfers  by three impulses. 

One precise numerical study has led t o  0.9248 < eo < 0.9252. For eccentricity 
eo the domain of maneuverability contains four in f in i t e ly  f l a t  symmetric tr iangles,  
having two peculiar vertices corresponding t o  v = ;t 122.31 ; (E = 2 39.44°) and 
4 = 26.04' (+0 or 180~).  These points a re  ut i l ized i n  the course of describing 
"Lawden's spiral" (If  a r c  for  which 

0 

- - -  
and 6 s (I - 2s2)(3  - 4 2 )  e s i n  v = 

(3  - 5S2 l2  
with s = s i n 4  1 - 3 s 2 ) ( 3  - 42)' 

( 3  - 5S2l2 (1 + e cos v) = ( 

The th i rd  vertex of these in f in i t e ly  f la t  t r iangles  corresponds t o  4, = 2 170.33' 
(+ 0' or 180°), E, = 96.26', with the relations:  
s i n  E s i n  E ,  < 0 and s in  E t a n  + > 0. 

s i n +  s in  +, > 0; cos 9 cos 9, < 0; 

2.2 The Useful Angle and the  Commutations 

The determination of the useful angles i s  very important, not only because they 
delimit the u t i l i zab le  directions of thrust ,  but a l so  because the extreme directions 
on the  sides of the useful angle correspond t o  the commutations, t ha t  i s  t o  say, t o  
the discontinuities i n  the posit ion of the  thrust application point ( thrust-off and 
then on again at  another point of the orb i t ) .  

L e t  us rewrite the equations of the domain of manemerability: 

b 
a 

Y = - sin(v - +) + c o s + s i n  E 

Z = 2 cos+ + e cos(v - +) - e cos+cos E 

A t  a point XYZ of the domain of maneuverability the tangent plane i s  determined 
by the two vectors: 
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v 
(E  being bound t o  v by tan - = t an  2).  

2 

I f  the point XYZ corresponds t o  a l i m i t i n g  direction of the useful angle, it 
i s  such tha t  there i s  a second point X, Y, Z where the  tangent plane t o  the domain 
i s  the same (corresponding point of commutation). 

It i s  suff ic ient  then, theoretically,  t o  solve for  v and e given+,  v 1 9  and +I 

i n  the  three following equations: 

X Y Z  

= o  

a 

a z 

I_ 

x, Y, 2) = 0; and 

One can thus obtain the useful loca l  angle and the corresponding commutations 
for every value of e and v. 

We w i l l  go on t o  give here some limited developments i n  the vicini ty  of e = 0 
and of e = 1. 

Because of the symmetries, the  useful angle i s  formed from 2 angles opposed t o  
the vertex. 
and the local  horizontal. 

These angles a re  a l w a y s  within the acute angles formed by the tangent 
The useful angle will be delimited by 9; and & (Fig. 7). 
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Fig. 7. Useful Angle 

s i n  v L 0:  

s i n  v I 0 :  O > + i > + s > @ ?  - z  
o I (pi 1 4 ~  5 @I 2 2 

TT USEFUL ANGLE 

1. Development i n  the v ic in i ty  of e = 1. 

Let us put: E = 2/F--T;;i = E 
a 

A. I n  the v ic in i ty  of the perigee (v  - 0), t o  order E5: 

+;= - +  V - v3 - ZZ. , + S F - - - ' - ,  v v3 VE2. 
4 512 32 4 512 32 

and Ivl 5 I 4 k  (beyond lvl = & E  : 1 + i  I > 
angle). 

B. 

I ,  there i s  no longer a useful 

I n  the higher h d f  of the orb i t  (v  - 7~ ) t o  order e': 

+i = E sin E max [( 2(1  - ' cosE) ); ( - I  +&-)I 

And +Ii = E sinE [ - I  +,/-I ; +s = 2sinv 3 = 3+i 

For cos E c - $ e2, I +'iI < I + i  I ; +'i i s  not involved. The useful angle 

goes from 4; t o  &. 

For - e 2  < cos E < f E€*:  I+'il > I + i  I ;  +i i s  not involved. The useful 4: 4 

angle goes from t o  9,. 

For cos E > $ E 2 :  1411 > I+J, there  i s  no longer a useful angle. 

Thus, from v = 46 t o  E = f - y c 2 a n d  from v = -)+E t o  E = -E + 4 E  a re  
I3 2 

2 

extended to  
between e = 1 and e = e,, (- 0.95). 

purely b a l l i s t i c  arcs without any useful direction. These arcs occur 
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2. Development i n  the neighborhood of e = 0 or of sin v = 0: 

-- 5 . 5  l3 e sin v + order(essin5v) e sin v(2- e cosv) - 2e3sin3v(6 - e2cos2 v )' 
ton +S = 4+ecosv-e2cosZ v (3+ecosv)(4+ecosv - e2~os2v)4 1536 

esinv + 18e3sin3v + 2e~sin~v + order (e6sin5v) 

3 + e cosv (3 + e C O S V ) ~  81 tan +i = 

(true fo r  Cpi but not f o r  # i ' )  

e s in  v e sin E 
I +ecosv  J- For the sake of comparison: tan @ = 

The useful angle i s  always l e s s  than l2.5O 
and less than one f i f t h  of @ (angle between 
the tangent and the loca l  horizontal). 

+s maximum - 26.2' 
c + ~  - (pi) maximum - 12O 
!U! m a x i m  < 0.2 

#I 

One always has: 1 + e cos 1 :  l tan+i l ;  

Itan +SI 5 I 4 e s i n v ( 2 - e c o s v  + e cosv - e2cos2 ' I  v 

Now here a re  the corresponding commutations: v, E, 9, &, +i,  +' i  are  r e l a t ive  
t o  the point of a r r iva l  on the intermediary e l l i p se  of the commutation. 
+ I  , # s I , c $ ~ ~ ,  + ' i l  a re  r e l a t ive  t o  the point of departure of the intermediary e l l i p se  
(corresponding point of commutation). 
the intermediary e l l ipse .  

v,, E , ,  

Of course a, l l  these elements a re  re la ted t o  

1. Commutations r e l a t ive  t o  Cps. 
(They correspond t o  the  generatrices JK i n  the sketches of the domain of maneuv- 

The calculation of v, by t h i s  formula gives an error  of the order of e3sin3v. 

Here i s  a more precise expression: 

obtained i n  u t i l i z ing  Lawden's results on an arc  with intermediate thrust (for this 
arc: v = vl (= vo), a i s  therefore determined by: 

I - cos v, - 3 + e . 4 +  - 
I + cos vo 

E tan 3 - e  4 - e - e  
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vo being determined by: 

e sin vo = 
6s-(l - 2 S 2 ) ( 3 - 4 S 2 )  

(3  - 5S2l2 

3s' (-7 + 212- 16s') 
(3 - %'I2 

e cos vo = 

s (which i s  used i n  place of s i n  4)  serves as a31 auxiliary parameter. 

One obtains: 

vo = - + 78 + a + (order e 9  
2 I2 10.368 

'I 31 3 a = [- E 4 e  + (order e 1 

The calculation of v, by t h i s  las t  expression gives an error  of the  order of 
e 5  sin3v s inz ( ( v  - v, )/2) 

I n  particular:  for  e 
for  e 

- 0 :  V , N r - V  - 1: s i n  v - 0 (because of the two b a l l i s t i c  arcs)  and 

9 and #I, are  given by: 

0 if cos v > cos v, 
7T If cos v < cos VI 

4J - 4s = lP, - 4Js, = { 

2. Cornta t ions  re la t ive  t o  #Ii: 
(They correspond t o  the generatrices LM.) 

+ (order e3sin2v) V V I  (3 +e l2  ton--.tan- = - - 
2 2 (3 - el2 

which gives an error  of the order of e3sin3v i n  the calculation of v, . 
more precise expression: 

Here i s  a 

VI (3- e)' V + V I  2 V + V I  V 
c o t - - c o t ~  2 =-- (3+ el2 [I + P COS' (F)] + [order e' sin2v sin ( ) ]  

(3 - e l2  I + x  p being defined by: ( I  + p) - - - - 
( 3 + e I 2  I - x 



The calculation of v, by t h i s  last  expression gives an e r ror  of the order of 

e5 sin3v sin2 v + ) . ( 2  

I n  particular:  f o r  e = 0: v, = T +  v 
f o r  e - 1: t an  (v/2)* tan  (v, / 2 )  - -4 

3.  Commutations r e l a t ive  t o  +;(therefore f o r  e > e, - 0.925). 
(These commutations correspond t o  the generatrices PN i n  the l a s t  sketch of the 
domain of maneuverability, f o r  which e - 1. ) 

Let us put E = and perform the development i n  the v ic in i ty  of E = 0. 

The parameter z( I z I S a )  i s  useful i n  describing the  solutions (with an error 

of the order of e3 fo r  +Ii and and E4for E and E ,  ) : 

I f  one t e r m s  an accelerating thrust a thrust directed in to  the par t  before the 
useful angle (see Fig. 7), and braJxing a thrust  directed in to  the back par t ,  one 
sees that: 
follows an accelerating thrust  and precedes a brake; one c o m t a t i o n  (p,follows a 
low*accelerating thrust and precedes a high acceleration, or else follows a high 
braking thrus t  and precedes a lower one. This determines the sense of the comrnu- 
ta t ions,  which we wi l l  demonstrate fmthe r .  

the sense of the canmutations i s  such that ,  one c o r n t a t i o n  + i o r  Cp'i 

For the commutations cPi(or cp'i i f  e > e, - 0.925) the  case v, = -v i s  simple. 
One obtains there: 

cos v = cos v, = the  root of the following equation: 

e2x3 + 3ex2+(3 + e2)x + 2e = o 

from which cos E = cos E ,  = the  root of the following equation: 

e2y3 + f ( e 3  - 3e) + y ( 3  - 2e2)  = ell - e', 

.te re fers  t o  a l o w  posit ion on the orb i t  
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e sin v cos E = arc tan - 3 + 2 e  COSY sin v 
+ = +i(or t$i) = arc tan 

This case i s  u t i l i zed  i n  the t ransfer  between equal e l l ipses .  

2.3 Impulses and Continuous Thrusts 

A t  this point, we can see tha t  an optimal t ransfer  between coplanar orb i t s  can 
be presented i n  the following manner: it i s  composed of a ser ies  of continuous 
thrusts or of lketrograde thrusts" (where the point of optimal application of the 
thrust i s  continuously displaced i n  a direction opposite t o  the primary motion, and 
f o r  which a physical interpretat ion consists of an in f in i ty  of on and off switches 
of the thruster  with coasts of nearly an orb i ta l  revolution between each thrust) ,  or 
even of impulses (the optimal point of application i s  f ixed) .  These continuous or 
'ketrograde'' thrusts, or e lse  these impulses, are: 

1. 
2 .  

always applied within the  useful loca l  angle. 
separated from one another by the commutations tha t  we discovered i n  the 

preceding chapter, and which correspond t o  the discontinuities i n  posit ion from the 
optimal application point of the thrust. 

I n  fact ,  there are  never (optimal) continuous thrusts  or optimal retrograde 
thrusts. One can see t h i s  i n  the fo1Aowing manner. 

Let us see under what conditions a determined impulse i s  "locally optimal," 
i . e . ,  cannot be replaced by 2 or more impulses a t  in f in i t e ly  neighboring points 
(or i n  the l i m i t  by a continuous or "retrograde" thrust) Fig. 8. 

Fig. 8. Study of loca l  optimality. Fig. 9, Local optimality, 

R 

The calculation i s  simple but long and ought t o  be carried out t o  the second 
order. 

The re su l t  i s  (Fig. 9): 
1. The character of l oca l  optimality depends only on the point of application 

and on the dlirection of the impulse, and not on i t s  size.  



- - . .  
2. If  one poses: MQ = V = initial speed of M. 

N a t  the  intersect ion of QR and of the loca l  horizontal. 
= 3 = considered impulse. 

I f  I MNI = J1 - 3 sin* Q l oca l  c i rcu lar  speed = .&: 
t he  

If 

the 

i q u l s e  i s  loca l ly  optimal. 

MNI J1 - 3 sin2cp < l oca l  c i rcular  speed =fi: 
impulse i s  not loca l ly  optimal. 

The character of loca l  optimality does not depend on the s ize  of the 3 ' s  
and, the globally optimal thrusts being also loca l ly  optimal, it i s  not possible 
t o  have any continuous or "retrograde" thrust fo r  which: 

iMNl J 1 - 3 s in2+ > loca l  c i rcular  speed 

because a small arc of such thrust would be advantageously replaced by the corres- 
ponding impulse. 

On the other hand, t h i s  demonstration would not be val id  i f  on an arc of 
continuous or retrograde thrust one had constantly IMNI.  J1 - 3 s i n 2 +  
circular  speed, with the additional condition of course tha t  the direction of 
th rus t  i s  within the useful angle. 
a l imiting direct ion among those globally optimal, i .e . ,  one will have Q = 4i o r  
& (1-0 or T ) . )  One f inds effect ively tha t  lMNl J1 - 3 s i n 2 +  
speed for Q =Qswhen the corresponding commutation Qsis inf in i te ly  short, i . e . ,  
when: 

= loca l  

(The direct ion i n  question could a t  most be 

= l oca l  c i rcular  

v = v ,  = +  E + + (order e 5 ) )  - ( 12 10.368 
This i s  quite logical  because an in f in i t e ly  short commutation i s  "local" and 
thrusts i n  i t s  immediate v ic in i ty  a re  not loca l ly  optimal. 

Thus appears an arc of continuous thrust (or, by symmetry, retrograde thrus t )  
which i s  the l imiting case fo r  a great  number of short commutations (v - v, ). 
This arc i s  t h a t  which i s  described by Lawden (1). Nevertheless it i s  not optimal 
because the optimal number of commutations remains l imited.  But it i s  f a r  from 
being large: i f ,  i n  departing from an e l l ipse  of eccentr ic i ty  e, one follows such 
an arc  with central  angle a, the  re la t ive  l o s s  ( fo r  s m a l l  e )  i n  re la t ion  t o  the 
optimum i s  only: 

a 
$ ( + 2Q2- + (order e31, If ItcJn-$I 2 

tan' 5 

for a = T 
2 T 2 - 6  which is e for small a ,  e ,6 640 
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if I tan 91 I 7 the error is 

+ (order e3) 32 8 

e2 which is 8 (2n%r2 + 6n-rr+31 fora= 2n7r In integer) 

2.4 The Senses of the Commutations 

~n optimal coplanar transfer allows only one impulse (finite or infinitely 
small) between 2 successive commutations. 
direction of thrust is coincident with that from one of the extremes af the useful 
angle, one can determine the sense of the commutations by studying the sense of 
variation of these limiting angles in the course of an "impiilsive" thrust. 

Since the commutations occur when the 

cpi , di and cps only depend on e and v; 

- de is known, -- dv - - -  dij because (v + E )  is fixed in the course of an 
dVC dVc dVc 

impulse. 

From which: 

I. + - (pi (or +Ii) + 0 or 

2be sin v cos + 
na2(3+ecos v12(( + e cosvl 

sin E cos Q, 

A )  For e - 0 or sin v - 0 :  - - + (order e3sin3v) 

8) For e - 1  : d tan +i - - 2k&Sd! 

d tan +i 

vc 

o, = .... if v - 7~ 
d vc 8no 2na 

d ton +Ii COS (p Sin E 
'c= 

dVC 

d tan+'. 3 na . ' 5 -  
cos+ s in€ d V C  2 

I let 5 I 

C) For all cases: 
d+i (or +'i) 

= sgn cos + sin v ; 
dVC 

sgn 

A) For e N 0 or sin v - 0 : 

1 6 e'sin v cos v 
e3sin3v + order (e4sin3v) + d tan 9s - - 

d VC no2 [(4 + e c o s v  - eecos2v)2(t + ecosv) 32 
- 



8 )  For e -  I : 

3 sin Ecos 4 3 sin E COS 4 .,... if  v - 0, + - ..... if v - 7r 
- - - -  d tan +s 

dVC 0 na 2 na 

C) For all cases by setting v, = the correspondont of. v in the commutation #s : 

d 9 s  sgn - = sgn [cos + sin v *  (cos v, - cos v)] ; 1 1 dVc 

one obtains the sense of the commutations: 

1. Commutations 9; (or +in): 

= + i  (or ~ i ) ;  + I  = +i,(or + 7 

The commutations $i(or (pi') follow an accelerating thrust and precede a brake 
(s i tuated a t  a point of the orb i t  on the other side of the major a x i s ) .  

2. Commutations 4,: 
0 if cos v > cos vI 
l~ if cos v < cos vI 9 - 4 s  = 91 - +SI = { 

The commutations 4,involve one accelerating thrust followed by another a t  a 
higher point i n  the orbi t ,  or e lse  a brake by another a t  a lower point (on the same 
side of the major axis) .  

It i s  then easy t o  construct examples of optimal t ransfer  i n  departing from an 
intermediate e l l ipse,  as  well as sense of the commutation above. 
lem, t o  f ind  an intermediary e l l i p se  or e l l ipses  t o  depart from the given orbi ts ,  
can only be resolved implici t ly .  

The opposite prob- 

2.5 The Number of Commutations 

A llcomplete" optimal coplanar t ransfer  contains therefore: a ser ies  of 
accelerating thrusts a t  points higher and higher which, according t o  the  sign of 
is, ( for  - l~ I E3, I + r )  w i l l  be accomplished i n  an ascending phase ( fo r  F2 > 
0) or descending (for 0, < 0); then, after a commutation +i ,  (or +Ii), a series of 
brakes a t  lower and lower points i n  the other phase. 

I n  fact ,  there a re  only the following cases: 
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A. Fini te  t ransfers  by one, two or three impulses w i t h  0, 1, or 2 comutations. 
I n  the last  case, one ccanmutation i s  $s and one i s  +i (or 4'i). 

B. Transfers "through inf in i ty ,"  which a re  simple although t i m e  consuming. 
A tangential  iqulse  a t  perigee effects  t ransfer  t o  a parabola, 
i s  entered by some negligible impulses a t  a great  distance. 
e l l i p se  i s  by a brake which i s  tangential  t o  the  perigee. 
always optimal i f  the r a t i o  of the distances t o  the perigees i s  greater than 11.938, 
or, between non-coplanar orbits,  i f  the angle of the o rb i t a l  planes i s  greater  than 

A re turn  parabola 
Passage onto the f ina l  

This t ransfer  mode i s  

60.1850~. 

This mode of t ransfer  always has a character is t ic  speed between 41.42-50$, of 
the sum of the two apogee speeds: 

Obviously, t h i s  t ransfer  i s  not physically real izable .  
close as one wishes, i n  a suff ic ient ly  long time, by using two very elongated e l l i p -  
ses and, a t  great  distance, a large c i r c l e  or a large intermediate e l l ipse .  

But one can come as 

I n  order t o  demonstrate propositions A and B above, it i s  suff ic ient  t o  prove 
that a t ransfer  using the ser ies  of commutations 4, 4, ;  or 4s, #.I;, 4,; or  &, di, 
9, cannot be optimal. 

It i s  easy enough t o  demonstrate that the ser ies  + s ,  c+i (o r  &), +s is  
# i )  and the ser ies  & (or not  optimal. 

qi), (ps are  real izable  only i f  the intermediate e l l ipse  of the commutation 
eccentr ic i ty  greater  than (a - l), and tha t  they are only optimal i f  t h i s  same 
eccentr ic i ty  i s  a t  l e a s t  of the order of 0.9. Finally, f o r  eccent r ic i t ies  close 
t o  1, the ser ies  +,, 4i (or #'i), (ps 
of the t ransfer  "through inf in i ty"  between the intermediate e l l ipses  of the 
commutations +$. 

We already know tha t  the ser ies  bS, Cpi (Or 
has an 

has a character is t ic  speed a t  l e a s t  double tha t  

The demonstrations of the non-optimality of the se r i e s  &,$J, w i t h  2 c o m t a -  
t ions of type (Ps (therefore of 3 accelerating thrusts or of 3 successive brakings) 
i s  much more del icate  i n  the general case, although it i s  evident f o r  e -1 because 
of the discontinuity due t o  the b a l l i s t i c  arcs.  It i s  made without too much d i f f i -  
cul ty  i n  cases where e (1 - e )  s i n  v i s  0 or close t o  0 a t  one time or another i n  
the course of the t ransfer  (v being the true anomaly of the points where one 
thrusts). 



3. TfERD PART: G ~ R A L I ~ E S - - D E T E H M T N A ' I T O N  OF 'IBE OPTIMAL MODE OF TRANSFER 

Since the domain of maneuverability i s  independant of Z and has the symmetry 
(da, -dGi), the result is: 

1. The variat ion of m i s  monotonoic i n  the course of a t ransfer .  

2 .  The cost  of a t ransfer  i s  an increasing function of IG,I ( fo r  -T 5 z2 5 
f T T ) .  

i s  the same fo r  all G,. 
I n  par t icular ,  i f  the  optimal t ransfer  i s  "through inf in i ty"  f o r  Z,= 0, -it 

3. I f  G,= 0 (aligned coaxial orbi ts) :  G2 0. One always uses the points of 

The ser ies  of the  impulses was shown i n  
the domain of maneuverability f o r  which d G  = 0, i .e. ,  the points ABC or D (tangential  
thrusts a t  the  perigee or a t  the apogee). 
the preceding section. There a re  then, a t  most, 3 of them (Fig. 10): 

I .  A tangential, accelerating impulse at  the perigee of the f i r s t  orb i t .  
11. A tangential  impulse a t  the apogee A of the  intermediate e l l ipses .  

111. A tangential, braking impulse a t  the perigee of the second orb i t .  

Fig. 10. Transfers between d i rec t  coaxial o rb i t s  (or aligned co-axial o rb i t s ) .  
A 

,/+\ 

'Y \ 6' \ !@ \ \ @,@I7  1 

k\, \ \ 

3-IMPULSE TRANSFER HOHMANN TRANSFER TRANSFER THROUGH INFINITY 
(OR 81- PARABOLIC] 

It i s  easy t o  compare the  remaining poss ib i l i t i e s .  
optimum, one of the three impulses i s  in f in i t e ly  small, and tha t - the  t ransfer  i s  
either:  1) 
and a t  the perigee of the other orbi t ,  or 2 )  "through inf ini ty ' '  with quasi-parabolas 
and an in f in i t e ly  s m a l l  impulse a t  a large distance. 
poss ib i l i t i e s  i s  i l l u s t r a t ed  i n  Fig. 11. 

One sees then tha t  fo r  the  

"Hohmann's"--by a bi-tangential  e l l ipse,  tangent a t  the higher apogee 

!,The occurrence of these two 
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Fig. 11. Transfers between aligned, coaxial, CoplaW orb i t s  ( W2 = 0) .  
A = max(A, , A, ), P = max(P, , P2 ), Po = min( PI , P2 ) . 
Min(A,, A 2 )  never a f fec ts  the choice. 

One se t s  
The optimal t ransfer  

"Hohmznn's" i f  P/ Po 59, "through inf in i ty"  if P/ Po 2 11.938. ,, i s  always: 
A t -  

Now here a re  some more general remarks: 

A. The optimal t ransfer  i s  by one impulse i f  and only i f  the following con- 
di t ions a re  met: 

1. The two given orb i t s  a re  tangent or intersecting. 
2. A t  the  lowest intersect ion point (where the optimal impulse i s  

accomplished) the required impulsive AV is: 

I. Within the useful l oca l  angle of each of the two orb i t s .  
11. Such that: 

+ 

These t ransfers  are rare because of condition 2.1. and because of the smallness 
of the useful angles. This condition requires tha t  i f  the orb i t s  a r e  tangent they 
ought t o  be coaxial ( G2 = 0 o r  T ) ,  which includes the case where one i s  a c i r c l e .  

3. The optiraal t ransfers  by 3 impulses are  also very rare .  
found only i f  the following (not suff ic ient)  conditions a re  met: 

They are  

(which carries with it e, + e, > 1.712) 

< -  2 5  
9 

< -  
3* 25 p2 
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The conditions 1 and 2 are very restrictive. 

I .o 

0.9 

0.8 

0.7 

For these transfers, the first impulse is an accelerating thrust, the last a 
brake. 

p2 

- 

2 - IMPULSE 
TRANSFERS 

- 

If the given orbits are tangent and coaxial (aligned or opposing, a2 = 0 or T) ,  

the optimal transfer is either by one impulse at the point of contact or "through 
infinity." 
12 if G2 = 0 and Fig. 12 if G2 = T. 

The occurrence of these two possibilities can be seen in Fig. 11 or 

In the other cases, the Figures 12 and 13 often permit the determination of 
the optimal mode of transfer (by 1, 2, or 3 impulses or else "through infinity"). 
We always suppose herethat P, I P,, which one can always do, since the transfers 
are reversible. 

Fig. 12 describes the case where the orbits do not intersect; e2 is an 
abscissa, P, /P2 an ordinate. 



The curve C4 therein i s  a transformation of the curve i n  Fig. 11. 

The equation of the curve C, i s  (where PI /P2 = y): 

I It passes by the point: e, - 1  - 5; y = - - - - 
p2 3 

The dotted curve (upper r ight) ,  showing the limit of the domain of t ransfers  
"by 3 impulses," i s  traced "by judgment" t o  pass through the points e, = 1, PI /P, = 
0.36 and e, -0.935 or 0.940; PI /P, = 1. 

I n  daubtful cases the following suff ic ient  condition for "passage through 
inf in i ty"  (valuable here but not always) sometines permits the determination: 

For t ransfers  between non-intersecting orbits,  the cost, o r  character is t ic  
speed, i s  not very sensi t ive t o  the angle G2: 

I f  the point e,, PI  /Pz (Fig. 12) i s  uaernea th  C4 the  cost of the  t ransfer  is: 

If the point e,, P, /Pz i s  above C4 the cost  of the t ransfer  i s  that of the  
Hohmann t ransfer  for S, = 0: 

0, A2 

For 8, # 0, it is  such thot:  

3 ( A 2  32A2Pl - VCH I v, 5 VCH ( I  + 

Fig. 13 applies i n  the case where the given orb i t s  intersect;  e, i s  the ab- 
scissa,  and e ,  the ordinate. 
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Fig. 13. Transfers between intersecting qoplanar orb i t s  PI 5 P, < A, >< A,. 
/ 

Test: Z , A  + Z 2 4  - m ' s  0 

JI - e  
If I B, 1 I 22O the optimal transfer cannot be "by 3 impulses." 

A , < A 2 :  TRANSFERS BY I OR 2 IMPULS 

I I I I 

0.1 - 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 08 0.9 1.0 

This figure helps i n  applying the t e s t :  

z , J K  + z,& - ./mi > o 

with z(e) = JTG - e& 

JiT 

which indicates par t icular ly  i n  the case G2= s: 

Negative tes t :  
Positive t e s t :  

optimal. transfer "through inf in i ty .  If 
optimd t ransfer  'by 2 impulses" where the  transfer 
e l l i p se  i s  bi-tangential a t  the apogees. 

One distinguishes 2 cases: 
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1. PI I P, 5 A, I A, (then e, Z e,) .  The optimal t ransfer  can be one of three 
types ( i n  departing from the o rb i t  A,,P, ): 

I. 
11 . By 2 impulses (one accelerating thrust, then a brake). 

By 3 impulses (an accelerating thrust, then 2 brakes). 
111. "Through in f in i ty .  

I f  the t e s t  i s  posit ive (or zero), the optimal t ransfer  i s  by 2 impulses. 

I f  the t e s t  i s  negative, the  conditions suff ic ient  f o r  "passage through inf in-  
I - e  

e2 
$ (J-2 - I )  ( I  - cos a,) z 2 

i t y "  should be applied: 

or e l se  P I ,  P,, and A, satisfying the condition of Fig. 11, can lead t o  the con- 
clusion of optimality of the t ransfer  "through in f in i ty .  '' 

Otherwise, t he  optimal t ransfer  i s  e i ther  by 2 impulses or "through inf in i ty ;"  
it can even be by 3 impulses i f  IZ21 c 22' and i f  the point (e,, e, ) i s  above the 
mixed dashed l i n e  i n  the  upper r igh t  of Fig. 13. 

2 .  P, c P, c A ,  e A,. This case i s  the most complicated. Any of the following 
types can be opti.mil ( i n  departing from the  orb i t  P I ,  A, ): 

1. 

111. 

With one impulse (accelerating thrust). 

With 2 impulses (one accelerating thrust, then a brake). 
11. With 2 accelerating impulses, 

I V .  With three impulses. 
V. "Through inf in i ty .  I' 

If  the t e s t  i s  posi t ive or zero, the optimal t ransfer  i s  by one or two impulses. 

If the t e s t  i s  negative, two conditions suff ic ient  f o r  "passage through inf in-  

(JZ - I)(I - cosiij2) I min (2 ' - e  
i t y "  are: 

or e l se  PI , P P I  and A2 satisfying the condition of Fig. 11. 
t ransfer  "through inf in i ty"  can thus be determined. 

e, 1 - 1 )  e, 

The optiraality of the  

As before, otherwise the optimal t ransfer  i s  e i ther  "by one-or two impulses" 
or "through inf in i ty ;"  it can be "by 3 impulses" i f  IW21 < 22' and i f  the point 
(e,, e, ) i s  to the r igh t  of the dotted l i n e  i n  the upper r igh t  of Fig. 13. 

Contrary t o  the case of non-intersecting orbits,  the t ransfers  between in t e r -  
secting orb i t s  have a character is t ic  speed which i s  very sensi t ive t o  the angle 
w,, as one can judge from the  following example: 
- 
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Exanple: p = 1, PI = 1, P2 = 2, A ,  = 3,  A2 = 4. 
w2 varies from 0' t o  180°. 
i;j, < 60°--the given orb i t s  are  in te r ior .  
?G,= 60°--the given orb i t s  we tangent, 
i;i2 > 60°--the given orb i t s  intersect .  

- 

One obtains the  following table: 

- 
* I  

Optimal mode 
of t ransfer  

Character i s ti c 
speed of 
t ransfer  

O0 60.38~ 6 0 . 6 2 ~  1800 
L i 
I I 

I 
I TWO accel- 'f One accel- 1 one accelerating I 

I impulse, then a I 
I impulses impulse I braking impulse I 

* I I 1 

0.1322 0.1519 0.1522 0.2k36 

I 

I 
erating 1 erating 

t I I 

Remark: The curves traced on Fig. 13 have the following equations: 

Jm- - e &  
, / F e  

2 

} 44 = 
Curve BC: 
Curve CE: z ,  + z ,  =& 

212 + z2 = 1 

Curve CD: J 2 ( 1  + e,  )(1 i e,) = J1 - e l e 2  + e , J i T &  + e 2 C ,  

These three curves are tangent (slope = -1) at C (e ,  = e, = 0.53533). 

Curve DE: This i s  a transformation of the curve C,(Fig. 12) with: 

1 - e l  PI  
1 -I- e l  P, 

= -  

&+1 1. 2 The curves DE and CD a re  tangent at D (slope = - 
1 The curve DE passes through the point e, = e2 = 2. 

The limiting curves of the  regions of t ransfer  "by 3 impulses" (upper r igh t )  
are traced "by judgment." 
= e, -0.925, and through e ,  = 1, e2 = 0.7127, The one i n  dotted l i nes  passes through 
e l  = e2 1 (slope = 0.36) and through e, = 1, e,  =0.7127. 

The one i n  mixed, dashed l i n e s  passes-through e, = e2 

4. FOURTH PART. THE PRACTlCAL POINT OF VIEW 

I n  practice rockets are  incapable of realizing theoret ical  impulses, and a l s o  
the t ransfers  ought to be effected i n  a f ini te  time. 
a solution i n  the neighborhood of the optimum. One decoqoses each impulse in to  a 
l imited number of s m a l l  thrusts which one e f fec ts  using the m a x i m a l  thrust of the  
rocket, on arcs of central  angle A a ,  situated i n  the  v ic in i ty  of the optimal the- 

It i s  then necessary t o  adopt 
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ore t i ca l  impulse point (and obviausly a t  intervals  of a revolution t o  one another). 
The loss re la t ive  t o  the  optimum i s  then less than: 

Aa2 (where p i s  the semi-latus rectum). r - 
24P 

On the other hand, it sometimes occurs tha t  the  theoret ical  optimal t ransfer  
i s  a "passage through inf in i ty ,"  which i s  therefore not physically realizable.  
can approach it by u t i l i z ing  very elongated e l l ipses  which a re  eventually joined 
at  great  distance by a large c i r c l e  or a large el l ipse.  
time, the loss r e l a t ive  t o  the optimum i s  of order T-2Rif the orbi ts  are  coaxial and 
aligned (because the elongated e l l ipses  are  then d i rec t ly  joinable), and of order 
T-"'if the  given orbi ts  a re  not coaxial and aligned. 

One 

If T i s  the desired t ransfer  

Finally, here i s  an interest ing r e su l t  i n  the case where the desired transfer 
time T i s  not very long ( l e t  us choose a f e w  orb i ta l  revolutions). 

To begin with, fo r  unlimited t i m e  T: 
I f  k < 21: 
If k < 3.3041: 

I f  k < 8.792 and i f  the given orb i t s  are in te r ior ,  the optimal t ransfer  

the  optimal t ransfer  i s  never by 3 impulses. 
the optimal t ransfer  i s  by one or two impulses (which 

one can see with the help of Fig, 12  and the t e s t  of Fig. 13). 

i s  by 2 impulses (which one can see f n  Fig. 12) .  

Therefore, i n  par t icular  f o r  3.3041< k < 15.582 the optimal t ransfer  can be 
by one or two impulses or e lse  "through inf in i ty ."  

L e t  us suppose tha t  we have the rather  frequent l as t  case, 3.3041 < k < 15.582, 
and tha t  the optimal. t ransfer  i s  "through inf in i ty ."  
with one or 2 impulses, an optimal t ransfer  which we will c a l l  the ''close optimal 
transfer" and which has, fo r  t h i s  case, a character is t ic  speed, which i s  greater 
than tha t  for  the t ransfer  "through inf in i ty ,"  

There is ,  among the solutions 

j - l  = -  ' +  Then l e t  j be such that: ' +  k - l  
Z J T ; T i C + i j G J 1 I l + n  

with 3.3041 < k 15.582 < j 

( j  decreases from + a> t o  15.582 whenk increases from 3.3041 t o  15.582.) 
announced resu l t  is: 
v i e w  of character is t ic  speed) than every t ransfer  which does not involve any impulse 
or thrust ( f ini te  or i n f in i t e ly  s m a l l )  beyond the distance j .  min(P, , P 2 ) :  Therefore 
i f  j is suff ic ient ly  high, it is  evident that  the"c1ose optimal transfer' '  i s  optimal 
f o r  T of the order of several o rb i t a l  revolutions. 

The 
the "close optimal transfer" i s  be t t e r  (from the point of 



Here are several  values of j fo r  values of k: 

k 

...................................... 7630 1 3.3041 ( =  root  of 8k3 - 33k' + 22k = 1) 
3.5 ...................................... 713 ...................................... 160 about 
4 
5 
7 ...................................... 

53 1 11.5 ...................................... 22.1 
15.582 ...................................... 15.582 = root of: 

j3 = 15j2  + g j  -I- 1. 

The ''close optimal" transfer is  the  Hohmann t ransfer  i f  the given orb i t s  a r e  
It i s  a transfer by a bi-tangential  e l l i p s e  a t  the aligned and coaxial ( G2 = 0) .  

two apogees or a t  the two perigees i f  the given orb i t s  are opposing and coaxial 
( G2 = 180~). 
the  useful angle, of commutation, and of sense of direct ion of the commutations 
defined i n  Part  2. 

I n  every case it is local ly  optimal and f u l f i l l s  the conditions on 

These r e su l t s  cannot be extended t o  the case of t ransfers  between non-coplanar 
orb i t s .  

Remark: If the two given coplanar orb i t s  are non-intersecting, t he  re la t ion  

vcH 5 vc 6 vcH ( I  + 32k 
(only valuable if VcH I Vcca): 

i s  always valuable i f  one takes V, = character is t ic  speed of the  close optimal 
t ransfer  ( VcH designating the  character is t ic  speed of t he  corresponding Hohmann 
t ransfer  obtained by taking G2 = 0) .  This r e l a t ion  permits the attainment of a 
value approaching the  necessary character is t ic  speed. 

The optimal transfers,  from the point of view of character is t ic  speed, 
between coplanar e l l i p t i c  orb i t s  ( t i m e  open) are generally real izable  e i ther  by 
2 impulse t ransfers ,  with an intermediate e l l i p se  if t h e  given o rb i t s  are s l igh t ly  
different ,  or by t ransfers  (through inf in i ty"  i f  t he  given orb i t s  are very d i f f e r -  
ent.  These t ransfers  a re  realizable in  practice,  with as small a loss as one 
wishes, by interposing very elongated e l l ipses  joined a t  a great distance by a 
large c i r c l e  or a large e l l i p se .  There is  nevertheless a small proportion of 
optimal t ransfer  cases with one impulse or with 3 impulses. 
have 2 intermediary e l l ipses ,  only appear if the sum of the eccent r ic i t ies  of 
t h e  i n i t i a l  and f i n a l  orb i t s  is greater than 1.712, 

These latter,  which 
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The u t i l i zed  impulses are always within one of the acute angles formed by 
tke tangent and the loca l  horizontal  and are always less than 26.2O from the  loca l  
horizontal. 
the thruster  cannot furnish them at one time. It then effects each fract ion a t  an 
i nterva l  of one revolution. 

O f  course, these impulses can be fractioned as much as one wishes i f  

When the  optimal t ransfer  i s  not "through inf in i ty"  the  research of the  optimal 
impulses and of the  intermediate e l l i p se ( s )  is  i n  general very complicated, but it 
i s  easy i n  the following cases: 
on the  same side) ;  opposing coaxial  o rb i t s  (perigees on opposite s ides) ;  equal orbi ts ;  
o rb i t s  of which one is  of eccentr ic i ty  close t o  zero o r  one. 

t ransfers  between: aligned coaxial orbi ts  (perigees 

It w i l l  cer ta inly be of great interest  t o  research the influence of a t i m e  
l i m i t  and the loss which r e su l t s  therein.  This i s  t rue  as much i n  the cases of 
t ransfers  "through inf in i ty"  as fo r  those where a weak thruster  obliges the use 
of thrust  arcs. 
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